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ABSTRACT

A diagnostic method is introduced for helicopter gearboxes that uses knowledge of the gear-

box structure and characteristics of the 'features' of vibration to define the influences of faults on

features. The 'structural influences' in this method are defined based on the root mean square

value of vibration obtained from a simplified lumped-mass model of the gearbox. The struc-

tural influences are then converted to fuzzy variables, to account for the approximate nature

of the lumped-mass model, and used as the weights of a connectionist network. Diagnosis in
this Structure-Based Connectionist Network (SBCN)is performed by propagating the abnormal

vibration features through the weights of SBCN to obtain fault possibility values for each compo-

nent in the gearbox. Upon occurrence of misdiagnoses, the SBCN also has the ability to improve

its diagnostic performance. For this, a supervised training method is presented which adapts

the weights of SBCN to minimize the number of misdiagnoses. For experimental evaluation of

the SBCN, vibration data from a OH-58A helicopter gearbox collected at NASA Lewis Research

Center is used. Diagnostic results indicate that the SBCN is able to diagnose about 80% of the

faults without training, and is able to improve its performance to nearly "100% after training.

INTRODUCTION

Present helicopter power trains are significant contributors to both flight safety incidents

and maintenance costs. Power trains comprise almost 30% of maintenance costs and 22% of

mechanically related malfunctions that often result in loss of life and the aircraft (Astridge, 1989).

Future helicopters such as the LH and fixed wing aircraft like the &TF require increased levels of

mission capability which cannot be met without advancing the state of the art in fault diagnosis.

1Presently with Mechanical Technology Inc. (MTI), Latham, NY.
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Fault diagnostic systems are necessary to detect failures in the power train reliably and rapidly,

so as to allow scheduling of maintenance before a catastrophic failure occurs.

Fault diagnosis of helicopter gearboxes (like most rotating machinery) is based upon the de-

tection of abnormalities in features of vibration such as the Root Mean Square (RMS), Kurtosis,

Skewness, etc. A considerable effort has been directed towards identification of individual features

that would be affected by specific faults in the gearbox (Zakrajset et al, 1995, Mertaugh, 1986,

Mcfadden and Smith, 1985, Dyer and Stewart, 1978) The traditional approach to diagnosis has

relied on human expertise to identify the abnormal features and to relate them to component

faults. In this approach, a diagnostician would relate the abnormal features to component faults

based on the component's proximity to the sensor producing the feature. Using the proximity

information, along with the information about the specific fault that the abnormal feature rep-

resents, the diagnostician would hypothesize faults in various components. The hypothesis is

then verified or discarded by examining the features from other sensors in the proximity of the

suspect component. The advantage of the traditional approach is that it utilizes the structure

of the gearbox to isolate faults. Its disadvantages stem from the difficulty associated with iden-

tifying abnormality in features that are contaminated with noise, in addition to processing the

overwhelming number of features that are obtained from the sensors. Due to the large number of

features and sensors associated with a gearbox, the diagnostician cannot pay equal attention to

all the features and is likely to ignore information that contradicts the hypothesis.

In order to cope with noise as well as the multiplicity of information in the features, pattern

classification through connectionist networks has been proposed as a means to integrate the fea-

tures for diagnosis (Chin et al, !993).. In these networks, the connection weights which represent

the decision regions for various faults are usually formed through supervised training. Therefore,

these networks require a sample set of measuren_ent-fault data for training. Since such data is

usually not available and is very expensive to generate, the applicability of supervised networks

is limited in practice.
Although they have not been extensively developed for helicopter gearbox diagnosis so far,

expert systems offer another alternative to the traditional approach (Pau, 1986, Milne, 1987).

Expert systems are developed at two different levels. At one level, shallow expert systems are

developed to compile human diagnostician _s knowledge relating measurements to faults into ijf
... then rules. At another level, deep ezpert systems are developed where the diagnostic knowl-

edge is derived from the physics of the process instead of pre'compiling it (Davis, 1984, Reiter,

1987). Shallow expert systems have been used extensively in the industry, but since they require

human expertise and lack generality, they have not been considered feasible for helicopter gearbox

diagnosis. In deep expert systems, on the other hand, measurements are related to component

faults by modeling the energy flow via the structural connections between components and sen-

Sors. Although deep expert systems use the knowledge of structure and function for diagnosis,

their inherent assumption that faults interrupt the flow of energy to the sensors is a limitation.

While this assumption is valid for faults that were considered (e.g., lead breakages in electronic

circuits)_ it is not suitable for gearboxes where a fault does not necessarily result in breakage of

energy flow. A gear tooth chip, for example, would invariably increase the level of vibration, but

may not break transfer of power from the driver to the driven gear.
In order to cope with the complications arising from accurate modelling of gearboxes, yet take

advantage of the pattern classification capability of artificial neural nets, the authors have recently

proposed a connectionist diagnostic network that incorporates structural and featural influences

2



as its weights (Jammu et al, 1995). This method, which is a hybrid between connectionist net-

works and deep expert systems, determines the weights of the network through incorporation of

structural and featuraI influences. In this Structure-Based Connectionist Network (SBCN), the

structural influences represent the proximity effect of component faults on various accelerometers,

and featural influences the type of fault characterized by each feature. Ideally, in order to accu-

rately account for the proximity effect, the strength of the vibration signal from the components

at the frequencies represented by the features needs to be modeled. This requires modeling the

attenuation of vibration at these frequencies as the vibration travels from the components to the

accelerometers. However, such a modeling task is difficult to perform, because: (1) the correct

values of the stiffness and damping coefficients in the path cannot be accurately determined due

to their time-varying and non-linear nature (Lin et al, 1988, While, 1979), and (2) it is not possi-

ble to evaluate the attenuation of vibration for the multitude of paths between components and

sensors (Singh and Lira, 1990:, Hollins, 1986).
As a compromise to accurate attenuation levels for individual vibration features, in the pro-

posed method the average attenuation of vibration across all frequencies is used to represent the

overall proximity effect of gearbox components. In order to obtain the average attenuation, the

gearbox is represented by a simplified lumped mass model, and the Root Mean Square (RMS)
value of the vibration from this model is used to characterize the average attenuation. These RMS

values are then used to assign structural influences representing the proximity effect of the com-

ponents on the sensors. In order to account for the approximate nature of the simplified gearbox

model, in the proposed method the structural influences are represented by fuzzy variables.

The structural influences only constitute the knowledge of the gearbox structure. So, there

is a need to represent the relation between component faults and vibration features separately.

Since vibration features are usually obtained at specific frequencies that are associated with the

rotational frequency of individual components (Stewart Hughes, 1986), their relation to various

components is readily available. This relation is used to assign the featural influences representing

the effect of component faults on features. The structural influences and featural influences are

incorporated as weights of a SBCN for diagnosis, which propagates abnormal features through

its fuzzy influence weights to calculate fault possibility values for each component in the gearbox.

For more details on structural and featur_ influences, please refer to (Jammu, 1996).

The SBCN is designed to provide fault possibility values for gearbox components without any

prior training. However, its design does not preclude the possibility of training. Misclassifications

in pattern classifying diagnostic systems are in the form of undetected faults, false alarms, and

misdiagnoses. Among these, undetected faults are safety hazards that should be avoided at all

costs, and false alarms and misdiagnoses, although not as crucial as undetected faults, should

be minimized so as to improve the reliability of the diagnostic system. One of the features of

the SBCN is its ability to benefit from connectionist learning mechanisms (Hertz et al, 1991) to

improve diagnostic performance after misdiagnoses. For this purpose, an error minimizing algo-

rithm, (a least mean square training algorithm customized to SBCN), is developed for adapting

the fuzzy influence weights of SBCN so as to avoid re-occurrence of misdiagnosis.

The proposed SBCN is experimentally evaluated in application to a Ott-58A helicopter gear-

box. Experimental vibration data for the OH-58A gearbox were collected at the NASA Lewis

Research Center. The proposed method is evaluated in diagnosis of eleven OtI-58A gearbox faults

that occurred during 57 days of testing. The diagnostic results indicate that the SBCN is able to

correctly diagnose about 80% of the OH-58A gearbox faults without any training and is able to



improveits performance to nearly 100_ after training.

STRUCTURE-BASED CONNECTIONIST NETWORK
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The overview of the proposed diagnostic system is presented in Fig. 1. The inputs to this

s stem are the vibration features which are first ut_zed by an unsupervised Fault Detection
Y : _::. :: ,. 7:_ ll_i "__o,_._ faults in the _earbox When the presence of a f_ult is

Network (lfvi_) co l(len_lly :_nu:p_,_=-,-, _e_'_ _ :_ _: : " _ _ ...... _T ....... 1.

tom te4by the FDN, fault diagnosis is performed by the Structure-ltased wonnec_loms_ l_e_u_
P P. _ ,_.. .... , :__ c^:.:=_;; _o inuuts the _ibration features need t6be scaled for
(SBCN). Since _J_wl_ uses aDnormm:-_,_Lal_ _ r , ......
abnorm_ty before diagnosis can be performed. In:this reseatS, abnormality-scaling isperformed

by an unsupervised pattern classifier, referred to as the 5ngleCategory, BasedClassi]ier (SCBC)

(Jammu and Danai, 1995), which is designed to identify the degree of abnormality in individual

features.

/
FeaturalIntiuences ..... C°N_e_w_st

Faulty Components

Figure 1: Overview of fault detection and diagnosis in the proposed structure-based

diagnostic system for helicopter gearboxes.

The schematic of the SBCN is shown in Figure 2. Diagnosis in SBCN is performed by prop

agating _he n abnormality-scaled values of the vibration features fi(t) through the SBCN, and

obtaining as outputs the fault possibility values associated with individual gearbox components

as: n

pk(t) = _ f;(t)_k (1)
i=1

where the w_ represents the weighting factors determined based on the lower and upper bounds

of the fuzzy influences (l_k and u_) between the ith accelerometer and kth component us:

wit: = li_ + (u_ - lik)f_(t). (2)

In SBCN, in order to make uniform interpretation of the fault possibility values p_(t), they

are normalized to have values between 0 an 1 as:

_ (_)
_(t) - E_:_ _
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Figure 2: Schematic of the Structure-Based Conneetionist Network (SBCN).

Art important feature of SBCN is the ability to improve its performance after occurrence of

misdiagnoses. It is assumed teat upon detection of a fault by FDN, the hypothesis of SBCN

indicating possible faulty components is verified by a physical inspection of the gearbox. If the

hypothesis is found to be incorrect, then a misdiagnosis is assumed to have occurred. To ensure
that this misdiagnosis does not re-occur, an adaptation mechanism is proposed for SBCN which

uses the correct information about the faulty component from physical inspection to adjust the

weights of the SBCN. The adaptation algorithm for SBCN isa generic error minimizing least mean

square training algorithm (Hertz et al, 1991) customized to SBCN. This algorithm reduces the

error between the outputs of the SBCN Ck(t) and the binary target Tk(t) obtained from physical

inspection. The binary target takes the value of 0 for all the normal components and 1 for the

faulty component. Sequential update rules for adapting the fuzzy influences in SBCN have the

form:

{lik + rl(Tk(t) - ck(t))(1 - yi(t))fi(t) if 0 < I/k < 1l_k = lik otherwise (4)

{uik + rl(Tk(t)- ek(t)(yi(t)) 2 if 0 < ulk < 1ulk = uik otherwise (5)

where 7/represents the learning rate which can have values between 0 and 1. In the proposed

method, in order to allow uniform interpretation of the trained fuzzy influences with respect to

their original values, adaptation is stopped when the weight values reach the bounds 0 or 1.

EXPERIMENTAL

The effectiveness of the SBCN was demonstrated using vibration data from an OH-58A heli-

copter main rotor gearbox (see Fig. 3). Vibration data was collected at the NASA Lewis Research

• • ......................... q .............. •H_.•
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Center as part of a joint NASA/Navy/Army Advanced Lubricants Program. Various compo-

nent failures in an Ott-58A main rotor transmission were produced during accelerated fatigue

tests(Lewicki et al, 1992). The vibration signals were recorded from eight piezoelectric accelerom-

eters (see Fig. 4) with frequency range of up to 10 KHz using an FM tape recorder. The signals

were recorded once every hour, for about one to two minutes per recording (using a bandwidth of

20 Kttz). Two magnetic chip detectors were also used to detect the debris caused by component

failures.
Sun:

Gear(SG) 2. Output Mast Ball

Planet , Subsystem Bearing(aBB) ... el
Beadng(PB) r"_ .... _o...,_.:,.._ / _pira!_ev

Planet \l: _ _ Gear(SBG)

• Gear(PG)/_ _ ,_ ___._ / Spiral Bevel

:: Bearing(TB)

Subsystem I _ ....
: $ : a

Gear Rollei _

Bearing(GRB) Duplex : : : I. input
Bearing(DB) Mast Roller Pinion RoUer Subsystem

aearing(URB) Be_g(PRB)

Figure 3: Layout of the various components in the OH-58A gearbox. The figure
also shows division of the gearbox into subsystems for diagnosis.

In these experiments the gearbox was run under a constant load and was disassembled and

inspected periodically, or when one of the chip detectors indicated a failure. A total of five tests

were performed, where each test was run between nine and fifteen days for approximately four

to eight hours a day. Among the eleven failures which occurred during these tests, there were

three cases of planet bearing pitting fatigue, three cases of sun gear pitting fatigue, two cases of

top housing cover cracking, and one case each of spiral bevel pinion pitting fatigue, mast bearing

micropitting, and planet gear pitting fatigue. Insofar as fault detection during these tests, the chip

detectors were reliable in detecting failures in which a significant amount of debris was generated,

such as the planet bearing failures and one sun gear failure. The remaining failures were detected

during routine disassembly and inspection.
In order to identify the effect of faults on the vibration data, the vibration signals obtained

from the five tests were digitized and processed by a commercially available diagnostic analyzer

(Stewart Hughes, 1986). For analysis purposes, only one data record per day was used for each

test. Overall, fifty four vibration features were extracted for each accelerometer. Out of these,

nineteen features were indicators of general faults_ whereas the other thirty five features were

synchronous time averaged Signals which related to specific gears in the gearbox. The detailed

• i_, : •



I Ve_cal

Longitudina|_ "

#1, 2, 3 attached toblock on right _on mount

#4, 6, 7, 8 studded to housing thmug_stcel insets

#5 attache<l to block on input housing

Figure 4: Location of the accelerometers on the test stand for OH-58A.

description of these parameters is included in (CMn I992).

RESULTS

For fault diagnosis of the OH,58A gearbox, the influences between the gearbox components

and the eight accelerometers were obtained. For this purpose, five primary vibration travel paths

in the gearbox were modeled using lumped mass modeling. These pe_hs consisted of: (1) Duplex

Bearing to Triplex Bearing through Spiral Bevel mesh, (2) DuplexBearlng to Ring Gear through

the Sun-Planet mesh, (3) Mast l_oller Bearing to Mast Ball Bearing through the Main Shaft, (4)

Ring Gear to Mast Ball Bearing through Ptanet Bearing, and (5)Duplex Bearing to Mast Ball

Bearing through the Sun-Planet mesh. The first travel path was in connection to Accelerometers

4, 5, and 6, whereas all the other paths were connected to Accelerometer 1, 2, 3, 6, 7, and 8.

Based on the lumped mass model of these paths, the RMS values of vibration are computed and

used to assign the fuzzy influences between each of the components and the accelerometers.

Fault diagnosis of the 0tt-58A is performed in two hierarchies. In the top hierarchy, the

gearbox is divided into three subsystems (see Fig. 3) and faults in each subsystem are isolated.

The weights of the top SBCN sub-section are set equal to the average of the structural influences

of the components within each subsystem (see Table 1). The inputs to this sub-section consist of
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the averaged values of abnormality-scaled features from the eight accelerometers, and its outputs

denote the fault possibility values for the three subsystems. In the second hierarchy, the faulty

components within each subsystem are isolated. The inputs to the SBCN in this hierarchy were

eleven of the nineteen features which were indicators of gear and bearing faults, and the thirty five

synchronous time averaged features associated with the OH-58A gears. Due to the unavailability

of synchronous time averaged features associated with bearings for the OH-58A gearbox, faults in

individual bearings could not be isolated, and only bearing groups were considered. For this level

of diagnosis, the featural influences (see Table 2) were multiplied by the subsystem influences so

as to reflect both the proximity and frequency-specific informationi and were used as the weights

of the second SBCN sub-section. •

Table 1: Influences of the three OH-58A subsystem on the: eight accelerometers. The

influences shown are" '-' Nil, L Low, M Medium, and H High.

1: Input I 2. Output 3.

1

2
3
4 H
5 H
6 M

7
8

M H
M :H
M: : H

L

M
M H
M H
M H

Table 2: Influences of the gear G and bearing B families on the features. The influ-

ences shown are: '-' Nil, 'L' Low, 'M' Medium, 'H' High, 'D' Definite. The

characters shown in parenthesis indicate the association of each feature to

the fault: (G) Gear faults, (B) Bearing faults, (P_) Rotating element faults

(both gears and bearings).

Feature

TEO-G(R)

TEOiP(R)
TM1-G(R)
TMI-P(R)
Cepstrum1911(G)

Cepstrum572(B)
Tonel911(G)
Tone572(B)
Env. Kurtosis(B)
Env. Base Energy(B)
Env. Tone Energy(B)

Subsystem 3

: M M M M M
M M M M M
M M M M M
M M M M M
D - - L
- L - L - D

D L
L L - D
tt tt It

- H H H
H H H

................. i..........:U ...... i̧ ii/
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The fault possibility values for the three subsystems of the O1t-58A gearbox obtained from

the top sub-section of SBCN are shown in Table 3. The results in this table represent the hard-

limited fault possibility values (threshold of 0.5) and include, for comparison, the actual condition

of the gearbox reported from routine inspection inside parentheses. The results in Table 3 indicate
that in Test 1, faults in Subsystems 1 and 3 were correctly identified on Days 5, 7, and 8. In

Test 3, the fault in Subsystem 3 on Days 3 and 4 was correctly identified, along with a possible

fault in Subsystem 1. The housing crack on Day 9 of this test was left unidentified because it

was never prompted by the Fault Detection Network. Nevertheless, this particular fault (housing

crack) could not be isolated by the current SBCN due to the absence of features that would be

effected by this fault, Also for this test, faults in Subsystems 2 and 3 were correctly identified

on Days 11 and 12. In Test 4, the fault in Subsystem 3 was correctly _agnosed on Days 10,

11, 12, 14 and 15. Moreover, on Day 13 of Test 4, even though the gearbox was supposed to

be normal, the SBCN indicated faults in Subsystem 3. This was due to the replacement of the

three-planet assembly with a four-planet assembly, which changed the vibration characteristic of

Subsystem 3. In Test 5, the fault in Subsystem 3 was correctIy identified on Day 9. There was

also a misdiagnosis in Subsystem 1.

Table 3: Results from the faulty subsystem isolation by the first subsection of the

SBCN for OH-58A gearbox. Inside parenthesis the actual faults are included

with '*' indicating the observed faults.

3

4

5

6

7

8

9

10

II

12

13

14

15

Fault

D_ Test 1

_ (-)_ (-)
(-)
(-)

1, 3 0, 3)
(1, 3)

1, 3 (1, 3)
1, 3 0, 3)

- (1", 3*)

Subsystems Isolation for OH-_8A

Test 2 II' Test 3

- (-) (-)
_ (-) 1, 3 (3)

- (-) - (-)
(_) - (.)- (-)I

_ (-),
- (-)
- (-)

(-)
(-)
(3)

. (-)
2, 3 (2, 3)

2, 3 (2, 3)
(2", 3*)

- (-)
_ (-)

(-)
3 (3)
3 (3)
3 (3.)
3 (-)
3 (3)
3 (3*)

Test 5

- (-)

(,}
- (-)
- (-)
- (-)

(3)
1, 3 (3)

(3)
- is*)

Table 4 presents faulty component isolation results from the second sub-section of SBCN.

For Test 1, the Spiral Bevel Pinion (SBP) failure in Subsystem 1 was correctly identified (with

a possibility value of 0.9) on Day 5. However, the possibility value decreased on Days 7 and 8,

probably due to increased noise levels immediately after the occurrence of faults that mask the
affect of faults on vibration features. Also, the sun gear failure in Subsystem 3 was correctly

identified only on Day 8. The SBCN also misdiagnosed faults in bearings of Subsystems 1 and

3 (BttG1 and BR.G3, respectively) on Days 5 and 7 of Test 1. This misdiagnosis is due to

the presence of strong cross-correlation between gear and bearing features. This point is better
reflected by the maximum correlation values between features and faults for the OH-58A gearbox.
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Theresultsindicatereasonablecorrelationvalues of 0.49 between gear features and gear faults, and

0.44 between bearing features and bearing faults. These numbers, however, are not as impressive

when they are compared with the cross-correlation values of 0.57 between gear features and bearing

faults, and 0.38 between bearing features and gear faults. Such similar levels of correlation values

indicate that these features do not provide the resolution necessary for faulty component isolation.

In Test 3, the bearing fault (BttG3) was correctly identified on Day 4, but a carry-over

misdiagnosis from the top sub-section of SBCN occurred in Subsystem 1. In Test 3, the two

bearing faults in Subsystems 2 and 3 (BFCG2 and BRG3, respectively) were correctly identified

on Day 12, however, they were misdiagnosed as gear fa_ts onDay 11. In Test 4, the bearing

fault (BttG3) in Subsystem 3 was correcGy identified only on Day 10, while it was misdiagnosed

on the next 2 days due to the masking of the fault by noise. Also, the Sun Gear (SG) failure

on Days 14 and 15 was not assigned the highest fault possibility values. It should be noted that
the fault possibility values for Sun gear (SG), Planet Lear (PG) and King Gear (KG) have very

similar values. This misdiagnosis is due to the new four-planet assembly installed on Day 13 of

this test, which changed the vibration assodated with these gears, tn Test 5, the Sun Gear (SG)

fault in Subsystem 3 was correctly identified, however, the planet gear failure did not have a high

fault possibility value. There was also one carry-over misdiagnosis in Subsystem 1 on Day 9 of

this test.
In order to evaluate the effectiveness of the adaptation algorithm for SBCN in improving the

diagnostic performance, data from the OH-58A gearbox wereused to train the two sub-sections

of SBCN. The fuzzy influence weights of both the SBCNs were ad_pted until the smallest mean

square was achieved with a learning rate r/set to 0.1. The _a_get faults required for training for

each day were determined based on information from the debris sensors, maintenance reports,

and analysis of vibration features.
The results from training the two sub-sections of SBCN using data from all the five tests for

the OH-58A gearbox are presented in Tables 5 and 6. These results indicate that the training

algorithm was able to improve the diagnostic results for both the subsystems and components. At

the subsystem level, results after training show improvements with faults in Subsystems 1 and 3

being picked up on Days 6 and 9, and misdiagnoses of faults in Subsystem 1 on Day 4 of Test 3 and

Day 9 of Test 5 no longer present. For the second sub-section of SBCN, training results show a

considerable improvement. Faults in Spiral Bevel Pinion (SBP) and Sun Gear (SG) in Test 1 and

bearing faults (BRG2, and BR.G3) in Test 3 are clearly indicated by the trained SBCN. The faults

in bearings of Subsystem 3 (Bt_G3) from Days 9 through 12 and Sun Gear (SG) fault on Days

14 and 15 are indicated as definite faults with a fault possibility value of 1.0. Similarly in Test

5, both Sun Gear (SG) and Planet Gear (PG) faults are clearly indicated as faulty with the high

fault possibility values. In summary, the result indicate that before training the SBCN was able

to diagnose about 80% of the OH-58A gearbox faults, and after training produced near perfect

diagnostic results. These results demonstrate the ability of SBCN to perform diagnosis without

any training when training data is unavailable, while being flexible to improve its performance

when such data is available.

10



Table 4: Faulty component isolation by the second sub-section of SBCN. The compo-

nents listed are - SBP: Spiral Bevel Pinion, SBG: Spiral Bevel Gear, BttGI:

Bearings in Subsystem (SS) 1, BEG2: Bearings in Subsystem 2, SG: Sun

Gear, PG: Planet Gear, I_G: Ring Gear, and BRG3: Bearings in Subsystem

3. A '*' indicates the observed faulty component.

Faulty Component Isolation fo_ OH-58A

-- SS 1

Days SBP SBG BRGI

1 to4

5

6

7

8

9

I SS 2 I SS 3BRG2 SG PG RG BRG3

1 to9

to 2

3

4

to 10

11

12

13

Test 1

1 to 9

10

11

12

13

14

15

0.90* 0.62 0.89 0.52* 0.73 0.12 0.86
_ * o -

0i68" 0.43 0.79 - 0.67* 1.00 0.23 0.72

0.65* 0.74 0.18 - 0.98* 0.70 0.70 0.33

Test 2

Test 3

1 to

9

10 to

8

0.58

11

0.43 0.77 0.80 0.65 0.56 0.71 0.72*

0.38 0.60 0.78 0.56 0.47 0.04 0.79*

- 0,67 0,79 0.52 -*

_ - 0.74* 0.67 0.71 0.55 1.00"
* _*

Test 4

0.34 0.41 0.75 0.79*

. 0.54 0.53 0.79 -*

_ 0.59 0.50 0.91 0.64*

. - 0.72 0.85 0.83 1.00

- - 0.81" 0.90 0,88 0.68

_ - - 0.79* 0.90 0.93 0.48

Test 5

0.24 0.68 0.60* 0.54* 0.50 0.58

11
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Table 5: Subsystem isolation results for OH-58A gearbox after training the top sub-
section of SBCN. For comparison the actual faults are included inside paren-

thesis with '*' indicating the observed faults.

Faulty Subsystems Isolation for Ott-58A After Training

Day

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Test 1

- (-)
- (-)
- (-)
- (-)

I, 3 (1, 3)
3 (1, 3)

1, 3 (1, 3)
1, 3 (1, 3)
1, 3 (I*, 3*)

Test 2

: (-)
- (-)

(-)
: (-)
- (-)
- (-)
- (-)
_ (-)
- (-)

Test 3

1, 3

3

2, 3

2, 3

2, 3

Test 4

C-) (-)
(-) (-)
(3) (-)
(3*) (-)
(-) (-)
(-) - (-)
(-) - (-)
(-) - (-)
(3) - (-)
(-) 3 (3)

(2, 3) 3 (3)
(2, 3) 3 (3.)

(2", 3*) (-)
3 (3)
3 (3*)

Test 5

- (-)
- (-)
- (-)

(-)
(.) ]
(-)
(-)

3 (3)
3 (3)
3 (3)
3 C3")

CONCLUSION

A diagnostic method for helicopter gearboxes is introduced that uses knowledge of gearbox
structure and characteristics of the vibration features to define the influences between the features

and faults. This method brings together the diverse areas of dynamic modeling, fuzzy systems,

and neural networks for the purpose of modeling the gearbox structure, representing the diag-

nostic knowledge and performing diagnosis, respectively. The effectiveness of SBCN has been

experimentally evaluated in diagnosis of OH-58A helicopter gearbox faults. Promising diagnostic
results have been obtained from SBCN for the 0H-58A gearbox at the subsystem level. However,

at the component level the results lacked resolution due to the strong cross-correlation among
features. The effectiveness of the proposed supervised training algorithm has been tested in im-

proving diagnostic performance for the OIt-58A gearbox. The results indicate that the algorithm

has been able to improve the diagnostic performance considerably for both the first and second

sub-sections of SBCN.
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Table 6: Faulty component results for OH-58A after training the second sub-sectlon

of SBCN.

: Faulty Component I_ for _)H-58A After Training
........ I ss21 ss3 _

Days _ PG _G BKG3
Test 1 ..... ::

lto4
5

6

7

8

9

1 to 9

1 to2

3

4
5 to 10

11

12

13

1 to8

9

10

11

12

13

14

15

1 to7

8

9

10

11

0.90* 0.01 0.03

0.00" 0,00

0.94* 0.00 0.02

0.92* 0.01 0.01

0.86* 0.01 0.02
Test 2

Test 3

0.48 0.03 0.01

0.73*

0.74*

0.77"

Test 4

°

Test5

[.00" 0.41 0.01 0.78

0.00" ....

LO0* 0.41 0.03 0.77

1.00" 0.56 0.01 0!69

1.00" 0.47 0.01 0.62

0.68 0.31 0.03 1.00"

0.73 0.40 1,00"

0.61 0.37 0.04 1.00"

0.65 0.36 0.05 1.00"

0.62 0.41 0.02 1.00"

0.75 0.35 0.03 1.00"

0.89 0.37 1.00"

0,88 0.38 0.01 1.00"

0.94 0.42 - 1.00"

1.00" 0.35 0.03 0.71

1.00" 0.38 0.03 0.68

1.00" 0.95* 0.01 0.61

1.00" 0.90* 0.01 0.66

1.00" 0.95* - 0.60

1.00" 0.92* 0.01 0.73
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